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ABSTRACT

Stability and convergence for a difference method for quasilinear

elliptic boundary value problems are proved. Asymptotic expansions of

the discretization error basic for Richardson extrapolation, are estab-

lished. The general theory of "discrete Newton methods" and "iterated

defect corrections via neighboring problems" [6,8] and Pereyra's deferred

corrections [22] are used to derive different high order methods. Some

special cases and computational problems are pointed out and numerical

tests are included.
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SIGNIFICANCE AND EXPLANATION

In this paper we discuss the numerical solution of quasilinear

elliptic boundary value problems in a bounded region 2 of Rn.

Problems of this type arise in many physical and chemical applica-

tions, e.g. in chemical reaction processes, in vortex motions of fluids,

in steady state heat conduction, in diffusion processes and in struc-

tural mechanics.

By applying the usual five point discretization in the interior of

2 and high order approximation of the boundary conditions we obtain

stable discretizations with an error admitting an asymptotic expansion.

This expansion may be employed with Richardson extrapolation or defect

or deferred corrections to obtain methods of flexible order (2, 4 and

5.5).

Due to the increasing complexity of the problems, linear equations

often are not adequate, so nonlinear problems have to be discussed

Error asymptotic results have been obtained before (Pereyra [23], 1970)

for those problems but under strong restrictions on the boundary of 0,

which essentially are satisfied for rectangular domains. For nonrectangular

smooth boundaries of Q only the Dirichlet problem for the Poisson equation

was treated before (Pereyra-Proskurows:ki-idlun, [241, .177). This paper

gives the fir3t approach for smooth boundaries anI nonlinear problems,

generalizing the results in [23,24]. Further, our high

order methods, based on defect and deferred corrections, save a signifi-

cant amount of computer time and may be used for adaptive techniques.

*Since only a few special treatments, known in mathematical

physics, apply to nonlinear problems, one has to treat most of them by
numerical methods.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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HIGH ORDER DIFFERENCE METHODS FOR QUASILINEAR

ELLIPTIC BOUNDARY VALUE PROBLEMS ON GENERAL REGIONS

Klaus B6hmer

introluctionr.

In this paper we discuss the numerical solution of quasilinear elliptic diffrcr~:.,

equations on a general open bounded region . C IRn

along the boundary 2 (Dirichlet problem). Equations of this type arise in sev,rra'

practical problems, one of them discussed in 91. Since we are mainly intereste! ir

high order methods the situation has to be smooth enough.

We apply the usual symmetric five point formulas in all reqular -esh h

(all neighboring mesh points of x are in .). In irreiular -s-.

one of the mesh neighbors lies outside of 2) we introduce the boundarv con i

using interpolating polynomials of degree k <

For k = 0 and 1 we have the well known first and second order rneth : .

Gerschgorin (20] and Collatz [14] for linear elliptic equations. For k • 2 tne

method is due to Kreiss presented by Pereyra-Proskurowski-Widlund (241 for the ?oic--,

equation.

Now, Wasow [28] has shown by some examples, that an asymptotic expansion of th-

discretization error is not available if the boundary values are not reproduced

exactly enough. By a modification of the five point formula in irreqular mesh points

Bramble-Hubbard [li] obtain a first term in the asymptotic expansion.

Higher order asymptotic expansions are only known in two special cases: For

quasilinear operators Q has to be such that there are only regular mesh points

(Pereyra [23]). This regularity condition is satisfied essentially only for -

domains. For general regions 2 asymptotic expansions are known only in t;,e .'rlc'<>1

problem for the Poisson equation (Pereyra-Proskurowski-Widlund [2j). In

paper we generalize the asymptotic results of Pereyra-Prcskurowski-Widlunx to

quasilinear Dirichlet problems on general regions. Since we are mainly interested

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024, the Deutsche
Forschungsgemeinschaft under Contract No. BO 622/1 and the University of Karlsruhe.
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in high order results, the situation has to be smooth enough. Our results, a:r

Wasow's [281, are obtained here by combining stability and local discretization orrors.

!n [IC] we is e a.ecia techq ;--es t7 1ve, f r !.:.er e1'11t' ,--. > * : : - - •

considerably better results. F-pecially the condi~in:.s which we have to irpo

the coefficients are much less stringent than here a:.J the error asymptct'.c frr'

is nearly as good as h:ere for '=, .

• r . we i-ormulate the iscret .tL :::c-. - , i:.: . i.

obtained, §3 is devoted to a stability proof fir ocr meth'd for k<' usint s.e,

Lemmas of nreiss, given in [2(]. Since we have to impose ":. - relatively r;

conditionz c:, the differen*ial operator oti:,g ony staL' . ...

the K-norm, we sive another stability rroof " nur woaer

for the n-norm, 5ut osly for k._4. For >C, we tan'

The convergence of the basic second order method and the existence of an asymptotic

expansion of the (global) discretization error are proved in §5 for k < 6. Two special

cases which allow an extended: ,symptotic expansion are discussed in §6, one of them

treated already in connection with iterated deferred corrections by Pereyra [23].

§7 uses the asymptotic results in §§5 and 6 to obtain high order methods via

Richardson extrapolation. Further it combines the asymptotic expansion with the general

theory of '§discrete Newton methods" 181 again providing high order methods. In addition

we indicate high order methods based on iterated defect corrections via neiehbouring

problems [29, 30, 27, 15, 16, 7, 8] and on iterated deferred corrections formalized by

Pereyra [22]. The mutual advantages ano disadvantages of defect corrections and

Richardson extrapolation are discussed. Especially, when ali mesh points are regular

the asymptotic expansion may be extended, depending essentially on the smoothness

of the solution. [n that case Richardson extrapolation is not able to compete

with the other methods, especially with the discrete Newton methods.

The discission of several problems arising in the computation of the different

methods are the topic of Y8. The applicability of fast Laplace solvers (see

Pereyra-Proskurowski-Widlund [24] and of Newton methods for the original nonlinear

discrete problem are discussed.

-2-
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Richardson extrapolation, deferred and Oefec corrections and discrete Newton

methods are used in §6 to obtain high order, methods.Numerical examples are given

ir §9.

A tSt

kti
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1. A quasilinear elliptic boundary value problem in chemical physic-s

In a chemical reaction let T be the temperature, k the thermal condu_-tiv: ,

Q the monomolecular heat of reaction and V the velocity of the reaction. t:

equilibrium of the heat transfer between the heat produced by the chemical reactio:.

and the heat co:-ductel. away is charctcerize: -In C: y. rv t.. -

p. ' 0):

n ,2
(1.1 j~~2 A:~ i=l

Now, V and T are related by the Arrhenius relation, which reads, in the sir::l.,h

case we have assumed here, as

E
(1.2) V = cv exp(- E)

RT

where c is the concentration, v a scaling factor which may be positive or negativ ,

E the energy of activation, and R the universal gas constant. So we obtain fro.

(1.1) and (1.2) the equation

1kAT =-cvQ exp(- ET) in 0

with suitable boundary conditions on K

For constant Q and k, and T close to TO, (1.3) may be transformed into

Ap + 11 exp i = 0

(1.4) cv.Q.E exp(E )
|with exp( - --- ) , ,= , (7--T.

kRT 0 RT

It is possible to give the general solution for (1.4) in the two dimensional case

(n = 2 in (1.1)), see Ames (2], p. 182. The approach given there may be generalized

to the equation (1.3). To obtain a solution satisfying the boundary conditions in

(1.3) one has still to solve the difficult problem to choose three suitable fwc<".

F,fg such that p, defined by exp p=F(fg),satisfies the boundary C 'oirts( ee [' 1,:

For n > 3 or for anisotropic heat conduction this approach is no longer possible

and we have to find other methods. Here we are concerned with the corres'c:c[

difference analoga to (1.3) and their generalizations and with improvements of the

approximate solutions.
-4-
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2. The basic difference scheme for elli:ptic problems.

Let a., i = 1,...,n, f and g be continuous real valued functions, deflnEi

a-. o~en, bou. ed amd cor.necte . cJ?,xz- anu 7 rI:~eczive :.

B cIR*! .Thenwe oefi:ea:eLp--i .i= *-' .. a.>

D := {y c C2 () C V (y(x),7y(x)) B CB' )C
xe2f n

[y(') 9 (-) in 2 '

a(-) a > 0

Now let Fy = 0 have a unique solution z in D withz

D( : = {y e DI IlY - zil -7 ) <

z is unique solution in D of

z

(2.2)

= ai(.)z (-) + f(-,z(.),Vz(-)) o in
0=FZ I]'=x

z(.) - g(.) = 0 in K

Conditions for unique solutions are given, e.g., in Bers [3].

To define a discretization we i:,troluce a gril T. and the griJ Ie:

T
(2.3) [ h n f x f e lx = (xI .....xn)T ,x 

=  nih,n i  f ZZ}

IG h, n : {x E ]nIx = (x I ..... xn T, xe C ],x, = nih,n i e 2 for i v"..

where we have,for simplicity, chosen an equal stepsize h in all directions. The

following discretization is a generalization of methods given by Gerschgorin (2 1 and

Collatz [14] for linear elliptic second order equations (k = 0 and k 1) and by

Kreiss and Pereyra-Proskurowski-Widlund [;4j (k < 6) for Poisson's equatic:.

With the open set ( we introduce the mesh points in ,' and distinguish between

the set of regular mesh points (slightly different from the Introdiuction)

Q : x e QIx+ he. e Q
, i = 1. n) rh

-5-
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(here e. are the unit-vectors in the lircetion )f the positive i-th coordinate axis)

and the set of irregular (mesh) points

:- := ix f _iC i : x + he. £ or x - he i e ,
h,i j h,n

In regular points we use the standard centered difference approximations for the

derivatives to obtain ':;.,..vt . ." >" .. t. ... ". he n.-'

2 n
hp(1hF)r (X):z - i ai(x){r (x + he i ) - 2 W(x) + nh x - he.))

(2.4) h(x + he - (x - he ) (x + he C - h (x - he 0

h hf~x(x) h, h
for X h)' 2h 2h

h

If x is an irregular mesh point, at least one of the x + he. 0 . In this case w"

have to replace in (2.4) every 9 h (x + he.) with x + he f by a p-ovisional value

obtained by polynomial extrapolation. Let, for that purpose, x e 1 . ..,'h, Vi ' ... ..

but x - he .... x - (k - l)he i e h" Further let x*, x < x* , x + he., be the
1 1 1 1 - I

unique intersection of M1 and the line segment [x, x + he .. For h small and 12
1

smooth enough, these conditions will be satisfied.

s.h
1

x~ . x-(k-I)he. x-he. x /x-x+he.

Figure I

Now we define the followinq approximations for yX.x. (resp. yx.): Compute an inter-

polating polynomial Pk of degree k, defined by Pk(x - (v - l)he) =l-v

= 1..k, P (x) = g(x), and replace in h 2 2y X yl - n+ - resp.
1

2
hYx. y - yI the value yl by y 

:= 
Pk(x + he.). If the distance from x* to

1 1

X + he. is s h, with 0 < s. < 1, we find (see Pereyra-Proskurowski-Widlund [241)
1 1 1-

-6-M
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(2.5)k

with a1 T. (s niv -~)

;.=o

11
Yl - yx- - a)

If s. 0, that is x x + he. we find 1. 1, = .,1 1 1O i i"'

Therefore yl = y(x!),a:, , - . I *. . ) ". -

i =tj and if we use h (x + he :) = g(x + hei) in (2.4).

for =] " ro;;w!:: ' . .'- : . '?.. . . . . C y ' .s c :.e 
I 

:"-

,o ( .' ) "O : e case th : 3 . "" :: + e . ..: '. , E . ... ,; 3: - e . .. ' '_
Th : -,--)r.

the:. fro :<: ;.;- ,...,:.: .) a:..: g:.: * : . .:.. ,: *, [ : . .::

r n

h2 F)nh ( a (x) nh (x + he ) - 2
n  

(x) + (X - he."h"h i h i h h

i~ 1  .. 1,r IaO i vl

(2.6) k

C O"ll {g(~ l) - ul 
[ 

o~vi~lr~hX -(' (x~eu)- V h(X - (hx)

2(x  n (x ) - ) he -h ) he

O, h

h2ThX ) fr 2h h~

(2.2h

I k
{ g(x' - Q\) rh N - (v - )he )j) - nh N - he

1, 1i O 1 '1 hr

2h ..

{glx N +h he- -1he) (x - he

h hh

2h ), for xcP i

If instead of x + he E we have x - he Q 0, it is obvious how the equations have

to be changed. We finally a ;j the boundary valuer explicitely by

(- '/)( OF~n~x ::n (:.)-g x)for x E G h,n  nl :g.

-7- 
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When stability and co.sistency are -rove: -:.c - . ... k

see fetter [26 , the unique solvability of ..-
t 

"

( E:=C (mnflm()- Err _n? C) u a nl

(2.S) b~. F n l,)u,n )(,7.
nk ": D is i _; .*,

% h E€  ,,z A h z is the u ->'ue solut. - - (fp.F 
.
: : .

Again by, e.g. Stetter [26], we need for -he rocf cf .e o"

(whF) only to discuss the stabil'y of ( VF)'(-.) f=a_ ' -

(2.-) and (2.6) imply that , for f E Y 2(S a-.i v E s

derivatives, (0hF'(y) = (0hF)',_,y (h . That eas, w v -

proof to the discussions of (PhF'(z): So we forrmlate the ii_-:re izari:. Q :

affine operator of the form (2.!). With contin:cus real val-ef

ai(.), b('), i l,...,n, c(.) and d(.) ),efine2 o- , a"_ a >

g(.) defined on R we have

2
D = C (Q) ) C(Q) - C(2) C(7)

0n

(2.9) F ( a (')y + bi(')Y ) + ()Y(') + d(. '
y - F dy :C i i 1 x •

in Q, y (-) - g(,) -r .

In regular points the discretization PhFd in (2.4) reduces here to

2 nh 2
c~)~

h2(Ph Fd)nh(x) = (2 i a.(x) + h (X))1h(x)

n +h
(2.10) + a {ai(x) + b (x)}hn (+he + a (x) 2 i(x) I)(x -le)

il2 i h h 2 {ax ii~l i=1

+h
2
d(x) for x e Ch

In irregular points those n (x + he ) in (2.10) have to be replaced by expression,

corresponding to (2.5) for which x + he. 9 YC. For the stability proof in i3 it i-1

only important that hF0, F0 := Fdld=0 , may be separated into the sum of dis-

cretizations for ordinary second order equations. So we have for regular points:

-8
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h2 F0)fh(X) = a. a(x) '2 + h
2  

c(x) ! ()
h=1 n h

ha (x)

(2.11) '-=l

S h bIh(x)h bh-"i','- h x o: ;:
+ 2a-(X),lh(X + hei) + -1 2 W x h N

Again, for irregular points the rh(X + he.) in (2.11) with x iv h rA.' .
h - 1 -

replaced by expressions corresponding to (2.5). Further, we add 12.-) fo- ..

points tc :b-aU a Syste- of iirer e

it if :.,u to :tuay the pYeerties Df the 7a:-:..............

(2.12) h ( F ) h(X) for x C and for x c
ho0 h h

This matrix A may be written in the form (see Pereyra-Proskurowski-W;iI"Ln i

T
(2.13) A PiAiP.

i=l

with suitable permutation matrices P.. The matrices A. are obtained bv co1ltcti.
1 1

only those contributions in (;hF0)nh(x), which are multiplied by a fixed ai x)

(2.11)). Therefore these A. are direct sums of matrices of the form(.- -.1

we use the abbreviations to be intrcduced in (2.I§)

(2.14) B:=

(2 1+ - a2 + a3 + +
a0  h qo t ,-Po -po .-P.° .. .......- 7-po , 0 ... ........

0 0 0 0

I 2h -

a1  -P1  2+hq -p ,0 , . , 0 ................... ...

+ 2+h
2
q2 ,-P2  0 0 0 ......

a2  2 -P2

a_. . ........ , 0 ......- p-, 2±h - --

a' I + +

0 0

-9-
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The a :a ,X ) :e . ) i :- :. : : . : [ - , , : ." , " ... • : .
v

[x.,x*. C - G in the direction of the coordinate vector, .
1 1 h,n

see Figure 2. For simplicity we have used the followinq abbreviations
b.C-)

a(- ) a= a(. )I  ,p(- ) *-= a*- .)I • , : "):z (

a -I + a +
1 1 1i . I

c :~::i .,_ ? wY.ere 2e 1,5- -- "
V VI V \," VJ

(2.15) .tersecti.: :I:. c. , > l:.e f-e t oe : <*.

+ h -

+ 
7

x,:_l'X i x 0  x I  x Z-1 xZ i +1

+ h h 
-

s.h s*h

Figure 2

In our discussion we have confined the coefficients a. (.) to be functio-:s of the1

independent variable x f P alone. Yet, we could generalize the whole discussion in

§§2 ff. to the case

I ai .,z(.),z x  (-))z (') + f(",z('),Vz('))ini. =  ,. x.X.'
(2.16) Fz = x i i

with ai(.,z(.),z (.)) > a > 0.

-10-
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I
Then we would have th( (erlvative

0

1 1

(217) F' (ylu + a y a (lu + f (' ) '., v(, )u(-
I x x

(2 .17) F' (y~u = I+ na (0 (, . .), .... , . .1 1

f i ( .. .1 " ., ) ) u i n U(-) on

i +2

which is of the same structure, but mor. cor i li atei than

In 53 we qive a stability proof for (2.12) an) k-- by showino that

flAJI 2  -Ch
- 2  

for the matrix A defined in (2.12). So all results bae on 3 are

results for the Euclidean norm. The conditions which we have to impose are rather

stringent. Therefore we qive another, much easier, stability proof, valid only for

k < 4 showinq that IJAII_ Ch-2 So, usino this i4 with its less ,trinqent conditions

s sup-norr results are obtaiied. Since essentially KC

i t the a:Q.,tic e,:pans, o: : L,,: , ,.

I I



3. Stability

By stability we mean the uniform boundedness of The in>er- "

the difference operator in a re 17:. ,

To prove this property for the method, defined in (2.4)-(2.7), r Is n

stability of the discretization for the linear Frohlem F II i2.>), :

F y F' (z)y .3:. F fro .. ee [. - - r I. I'

prove that the matrix A, defined by (2.12), has the roert A

For that purpose we use and generalize some of the Lemmas, due to Kr, i,i

Pereyra-Proskurowski-Widlund [241. The norms in this iearaor3 h art --x .

Euclidean vector norm and the spectral matrix norm

Lemma 3.1 124]: Let the symmetric part of a matrix A satisfy

(A + AT)/2 -6I, 0

Then A is regular and IIA-I'I < 6
- 1

.

n
Lemma 3.2 [241: Let A P T AP with permutation matrices P . rf

______________ - i=l

(A. + AT)/2 > 61, l ' 0 , for al- I.

Then

(A + A T)/2 > n6I

Lemma 3.3 [241 : Let the matrix A+ be the direct sum of certain matrices B . if1 1.' ---

T
(3.1) (B.. + B.)/2> 61, 6 > 0, for all j,1J 13 -

Then

(A. + AT)/2 61

We have seen in §2 that the matrix A i: (e.) e s.- -at-'*cc.

the A. are direct sums of matrices of the form (2.>) and 1. am Fezomt." . U "1

we have assumed h so small that x e Qh,i implies, e.g., x + he. 2 and

x - (v - l)he i e h for v = 1,...,2k - 1. Especially we have therefore in (2.14)

that Z > 2k - 1. With the functions a, p, q,ard a ii: ,:.:c. " ..

with indices changed for convenience, we may 7,rove as 17. [.. ] z[e foiowinz

-12-



Lemma 3.4: Let the matrix B in (2.14) be split into two matrices B,, wh-r,
with P1 

and p in (.15),
-it PV V

(3.2) BI:=

2
a 1 l1- -q1  -p 1l

a -P 2  2+h q -p
2 2 2 2

am_1  0 0 . . . -1 ' . . -,-M

+(Xk +C(3 +a2 2
am  0 0 .. ..... 0, p p- -p+p- 2: -t;-

0 0 0

Let B2  be obtained from B1  by inverting the order of rows and columns and chanqin

m to m' and a to ('. Further let

m + m' = £ "m m-'k; in"> k

If

(B + B )/2 > 81 and (B + B )/2 > 61
1 1 2 2 _

then

(B + B T)/2 > 61

Before we are able to prove the next Lemma we have to do some preparations. We obtain

the symmetric part S of B1  as

S I s21 0

21 22 32 0

s3 2  s3 3  s 3 4  0

(3.3) S : (B + BT)2 = I 1 ,
1 1) 02 Qmm-k+l

0 Sm-m I s m-lm-l

0 •...• 0 smmk+ ... smm-l mS 5
-13-
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where

h
2  

12Sl= a(l + - q), s s=a(2+ ', =2...m-i

1 2 1 CE q,, .m-1

Sa2 +a ( +Smm am2 0m

uh
1 = 2 4 (a p+ - aup v )j, v=2,...,m -2,

(3.4) h
m+am( + h m m - k + 1,...,m - I

m, 2a 0m 2

(am + 
am_ h h p 2 O

2 4 (ampm - amlP ) - am(l 2 m 2

s = 0 elsewhere
Vi-

Let us now assume that

3+1 + * 2+a + * C+a + *
ae'C Ixx], p E [xi,x i , q EC [xi,x i ], 0 < < ,

+ *
a(-) 5 a > 0 in [xi,xi]. There exists

^ + + X* .
x [x. + (k + 1 - si)h, x - (k °

+ I-- s)-h] with1 1 1

a' (x) = 0, a' (.) > 0 in [xi,x] and a' (-) <_ 0 in [x,xi]1o

(3.5) 2aq - a" +,sgn a')(ap)' + 1"(() > c+ > 0 in [xi,x],[a
2aqasgn a')2(ap)' 0 in [xx] ,where we define
I- 2a - 0iin]

{2aq -I(ap)'I}(') >c+>0 in an interval of length > h with the midpoint R.
Iin [x., ) for a > 0

sg. a': -
-1 in (x,xi] for a' < 0

Here Cma x.,xt means that all derivatives up to the order m are (uniformly ) Holder-
i1 11.2

continuous in [xi,xi with exponent a, 0 < a < 1. For - - a" () < C+

the forelast inequality (>c+) in (3.5) includes the last (>0).We will come back to the case

a '(.) < 0 in [xi,x], a'(-) > 0 in [x,x.] in Remark 3.7.

Now we choose the numbering in (3.2) such that 1 -Xlj<

-14-
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. V.5) imply :ha:cv s:::rue:: §a.. :. ' 3' ' s.. - N

S > a,vz. ... ans < eJ ,s -< . :e i

its L'L' reprezentation witt S 1'ag-r:3I marr:: [ .., - give tiie -factr> r ix

\ \

(3. $ S L R ~
" " .

\- . \ -lvNt

r

\ I,

where the Z and the r are defined in the usual way, so, e.g.,
r I v /r , v = - 2

(3.7) r+:= -\ " + , = 1,...,m - 2+v-sl uS-lu s v+ll' , I n-2

To give the R and r we would have to introduce the whole algorithm. Since wt-

need only the properties, given in (3.13) for the 2 and in (3.14) for r

we lo rot give the explicit results correspo:::'ug "o I. I.

Using the symmetry of S and the properties of the I ,+lv one sLra:'v :
ver i i es

r1

(3.8) S L L LDL

rm1

So we will study the matrices

rl

r 11

(3.9) L = and D = 2

IT
91 r

rm

t -15-
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We obtain from (3.4)

h , h2 
(3.10) -{a - a 4 [(ar) 0,

and, by induction, one shows that

h2 v\-I-
(3.11) r a + 4- 1 4

For the inductive proof and for our lat,+r iis.-us-orc. w,. nf-.r., w. 1r.

(3.7), (3.10), (3.11) that

h hI fa

+ -1 h -1 2 2 a 4a( v+I-v - (2(aj '

(3.12)

for v= 1,2,..,m - 2 - * 1'.

T
The vector R = (0....,0, k, ,mm) in (3.9) is proved, by similar arqument:,

nok+l mm-I

to be of the form

(3.13) kT 1 (0 .... ' 'C kc + 0k-' a..e ' 
+  2 ) + 

(0. .. ,Oh) .
Tk-1(2 0 'k k k-i * k 2 2

Further (3.8) and (3.13) imply

r-i r z a2+

m  sm v=m-k+l V = 2 (1 0

(3.14) 2

1 +.""+(o + + )2_ k +  
+ 1 1 }+(h):d,(s),2 k'" s +. t

4a 0 0 J

where we have used (see (24] and (2.5))

1 + + (ak+ ... + 02
(3.15) dk (s) rm (h = 0) = a 1 - k

0 4a
2

This rational function dk  satisfies (see [241)

d k(S) > c +(k) > 0 for k = 1,2,...,6 and 0 < S < 1

whereas it changes sign for k = 7 and 8. Therefore, for h sufficiently small,

we again have

-16-
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c, (k)

F+

(3.16) r (s) > > 
0 for k = 1,..., 6, h smallm -2

These results allow the generalization of Lemma 5 in Pereyra-Proskurowski-Widlund f24]:

Lemma 3.5: Let dmin denote the minimum in 10,11 of the function dk  defined in

(3.15), let (3.5) be satisfied and h be small enough. Then there is a yz -

tive constant C, independent of the mesh size h and the region 2, such that

s > 6I with
(3.17) = Cdminh2/(diam2()2

Proof: Since we need estimates of the form (3.17) we give lower estimates for

m

xTSx = xTLDLTx > min{r} IILxHI2
v=i

1
Now by (3.5) and with v < m < 0 (h) we find by (3.1') r,= a + O(h), so

rv > a /2 > a/2, v = 1,2,...,m - 1, and with (3.16)

(3.18) xTsx > min{a,c+(k)}/2 IILTxI22

We try to find an upper bound for ! y! since __< c y c E !,,

tILTxI C 1  T 2.
1xIi With y E IR, y" m ) andi L 1 in 0 9, n

verifies, since L is regular,

1 -T
yL

1  
yT -m LlYm)

simply by multiplying the equation from right with L. Since the o /a 0  are of the forms

6', (k) - v - s and since the vector £ in (3.13) includes only a/0, v = 2,...,k,

has a uniformly bounded norm in 0 < s < 1. So

JIL -Ty112 < I "11-i 2(1 T )2 + IYm
12  <_ C(IILI'l11

2  1) 11y 11 •

y 2 - 112 +ym2 112 < cymII + 11 2 2

Now, since
I-lu2  T -1
II 1 1 2 = (smallest eigenvalue of LILI
11 2 11 11

we are going to estimate this eigenvalue. The definition of L in (3.6) and (3.9)

leads to

-17-
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21

21 1 32

T '
LL 11 ,'2

I N

m- Im-2 m-lrm-2J

We use the well-known theorem of Gerschqorin [18] to

- v-I 2 I
(3.19) L 1 -min i 21, l m-lm-2 I- m-2(3.191 LI I 2 ' 2 i 2 - ] , ,

+ - ' !-i - !+ : ) . =2. m- 2)

with c, E t. We find, with 'x.-x -, a"( ) < 2 an: Z- r

(1-!Z > {2aq-(ap)'}. for x. <
h2

(3.20) 1 > aa{2aq-(ap)'-a"1 for x. >

( kT 2_ .(h).
+£M-lm-2 -[mim-2: +~}

Ignoring, for a moment, the vC(h)-terns in (3.12) we find

1 + 2 4o _ i I= (i 2-v d _
vv- 1 ' I V IV VV-i

(3.21) > -- {2q - a' a_V

3a v-2 v2
+ av-i T (2(ap)' + a__ - 4aq) + O(h

3

2 2 apu
aav_1  

=

Since v might be [-I1 we cannot neglect the h
3 

• - term. Combining (3.20) and

(3.5) we find (3.19) satisfied. We have ignored the vo(h 
3 ) 

- terms in 9' resp.

(v - 1)0(h 
3
) in £-l" That we may do so is shown by an elementary straightforward,

but very lengthy computation, essentially by showing that for these v0O(h 3)-terms

2(v - 1)O(h 3) - vO(h
3) 

- (v - 1)0(h 3 ) = O(h
3

-18-
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As a consequence of (:..), p.7" .1'

(3.18) Lemma ... 0

Remark .The conditions in .) are - e s-* e orce .

only purpose for a' <0 an, .4-(a; -' a" : -

term in (3 ... ). not dominate T.e .- e-'- n . 7e ' 2oose .,

limiti.g, properties. We get -. e:., wit

(vI := al) l  -(ap0) (a 4aq),Ix ,

x

a :
-2aq - a" - (a!, a + 2 - - - 4a ) •

whet,, ' v" h or

v-iap)', v-i

a a 2
{.2 2q " -(a:) + 2 gv- (2( c or4C

2q Ia qv(av

v a.

.. ; ' 1.a t i7o :, C'- :': J t o:s w '., i - , .' r: -e i r1". i ' " ' , !

e i~t .: -ven more c' c :[) r i 
.  

o cheP.c k c.r o:.:, . rrol 1e:-s ttA:. . }

satisf ied' one still can try , verify the "orresponm!inq conditions based co:; *he

inequaitesn given ir (.or

£+

Remark 3.7: We have confined our discussion to a' (-) 1 0 in [x.,i], a' (,) <0 [

[x,X i] If the distribution of signs changes, we have to impose

0 -9-
-MOM
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a EC Li,xi1,p E C i,xi],q [xi,xi], < <

a(,) > a > -7 ix .,x..

There exists xE [+x +(k+1-s+)h,xi-(k+!-si)h] with
J. 1 1 1

a'() = 0, a'(-) < 0 in Lx ],a'(,) > 0 in [ ,xi ]

(3.23) {2aq-l(ap)'I}(.)<C < 0 in a neighbourho-d of i,2

{2aq-a"-(sgna')(ap)' + aL 1(.) < C < C in [ xa 1"1

{2aq-(sgna')(ap)'- a1 , < 0 in VXiIx i

with sgna' { in ( 1,xi ] I

1in xix).

Then we find S < - 61, 6 > 0 and Lemmas 3.1-3.4 remain valid, if 5, > is reLaceI

by -6, < and the main resultl A-1 l <6-1 stays unchanged. So we find agair, the

stability resultI A-1 1 < Ch 2  C > 0. m

Remark 3.8: If we want to prove the result corresponding to Lemma 2.5 for 3.4 the

order of the indices in (3.2)ff has to be inverted. That may be simulated by the

transformation of x into -x, and it. (3.20), (3.21) a' and (ap)' change into

-a' and -(ap)', the rest stays unchanged. So conditions (3.5) imply Lemma 3.5

for S defined by B1 and by B2. 0

Finally we want to point out a very important special case:

Remark 3.9: If a = const. Lemma 3.5 remains valid, if (3.5) is replaced by

I 2+e  ± * Cl~c +*

/ pEC [xi,x i ] , q E C [xi,xi], a > 0,0 < x < 1

(3.2L ) (2q-jp')() > c> 0 in [ ,xi]

In (3.24) one may replace 2q-jp'I by one of the conditions

2q + p' for x > R and 2q-p' for x <

respectively

2q - p' for x > 9 and 2q+p' for x < 9

where 9 is an arbitrary point in V +(k+l-s+)hx. -(k+l-s.)h]. a

Combining Lemmas 3.1-3.5 we obtain

-20-
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Theorem 3.10: Let a, p, q introduced in (2.15) satisfy one of the conditiens

(3.5), (3.24), (3.23) or (3.22),let k < 6 and h be small enough, and let A be the

matrix defined in (2.12) - (2.15). Then there exist constants C > C ,i,.epenie.
k

h, such that

(3.25) A-'11 2 <- C(- Q)2 . h 2.

If we apply Theorem 3.10 to a linear elliptic equation of the form (2.9! we outdl.

stability result in the sense that the inverse operator to ;hF0' defined in (...

is uniformly bounded for h - 0. For the nonlinear discretization (2.4)-(2.7) th

stability is understood in the above sense for the operator F' (y), where y is

close to the exact solution z of (2.2) (see Stetter [261). So this "nonlinear"

stability property strongly depends on small enouqh fly - zJl. We only formulate a

stability result in this nonlinear setting for problem (2.2). We will treat the more

complicated problem (2.16) with the much less restrictive conditions in §4.

Theorem 3.11: Let k < 6, h be small enough, and for small fly - zl1 and .. .

r . -. Mf (0,f.., ,Y.) . * /a+

.i+2

(3.26) i= ,2,...,n,

q(.) := f(O... . . ...... ) (-y(-)Vy(.))i j a(o) e C
1
+ (P), 0 <

4- * -

Further, let for each maximal intersecting interval [xi,xi ) c " Gh (tC G
* i~x h,n -

X ,X. E 30) in the direction of the co-ordinate vector e. ex'it .:c

[x i +(k<+-s )h, xi-(k+l-s)I such that

+ *

a~') = 0, a'(-) > 0 in !x+ ,X , a'(-) < 0 in [x.,x.)

{2aiq-l(aipi)'l(.) > c+ > 0 in an interval of length > h with

(3.27) middlepoint R,

a!
21 •

{2aiq - a' + (sgna!)(a.p.)' + }(') > c > 0 in [x.,x.]
a!2  i
I a.

{2aiq +(sgna.)(a.p.)'- > 0in Xi]'
1 1 11 2a ~ 11

Then the discretization, defined in (2.4)-(2.7), is stable in the sense discussed

-21-
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or more coreLca~ere c *z,: s -7 CC ase (

We wa- cfr'lt h crres[ o7nir.g rez i- d. :.>a ..

.TeoreT. -:.: .. et k < d, . eal e:.guc, i. -3.>: : :r s>-al 
e:.e -

q(-) f (0,10. ... 0) 2C' .-

n
2q(- - > c. 0 in

Si=1 -

Then the discretization, defined in (2.4)-(2.7) is stable.

Proof: Theorem 3.11 is an immediate consequence of Theorem 3.10. Theorem 3.12 is

derived from condition (3.24). By

q p'(-)12 + c./n, i = 1.n

n

r(-) q(-) - 0
. . ..i=l.

* a
q := q + r, qi := q  

i 2,....n

we have found pi, qi' i 1,...,n, satisfying (3.24). a

For the special case of the Poisson equation

p() 0, i 1 .... n, o(-) = 0, that is

( n
(3.29) Ay + f(.) :- yx + (.) + f(-) in

y(') - q(') or. 1

the stability result corresponding to Theorem 3.2 has been proved in Pereyra-

Proskurowski-Widlund (24). We can not include this special case in our general

Theorem 3.8, since (3.27) would correspond to c. 0 in (3.24). The proof given

above breaks down for c, = 0.

-22-
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4. Stability for k 4 under less stringent conditions.

For k 4 a mucl easier stability proof may be given. If P is a I ermuti-

tion matrix, then PT B F and B contain the same diagonal elements only in a changed

order. Fuzther,the elements found in the same row . !olumn with b.. will be found in

that row and column which are a>2... . .... 1 -

Lemma 4.1: Let P be a permutation matrix. Then B = (b)ij is diagonal dominant if

T-
and only if P B P = (b.. ) is diagonal dominant and

m in {b. - b. m i {b - -= mbin-
=1 j=1 i=1 =

331i j~i

Further we need the elementary

Lemma 4.2: Let A = B. = (a ), let each nontrivial row in B. (b.. ) be diagonal

j=l j Q 
Ji,

dominant. with positive diagonal elements. Further let for each row of A exist a non-

trivial row with the same index in at least one of the B. . Then A is diagonal dominant3

and

min {a. - m a. . in min { b. - I b. .

• i=l1 l li "' = "il 31.1 £=i Ai " ...

£ i b bjii #0 i

Now if we want to prove stability it is enough to show that the matrices defined in (2.14)

are diagonal dominant. For that purpose we need less stringent conditions as in §3 (see

(3.5)).

Lemma 4.3: Let in (2.9) ai,bic satisfy

aib,'c E C(Q), 0 < a 
< a.

a- -llo P ,i = 1..n.

nn

Then for h < min {2/P. and k = 1,2,3,4 the matrix B = (b..) in(2.14) is diagonal
i=l

dominant with

2
(4.2) :min {b.. - b. > h , c > 0

i=o j= +

j7(i

-23-

A

____rw



n

Proof: Under the assumption (4.1) and for h mi ' wn-j'..
n i=i -

c(-)/ j a(.) and p(.):= bi ()/ai(.) (see (2.1r))

2 2 1 + h

2 2
2 hac - (I-1- 2 p +-l+ - p) =h

Further, the J- and , = 1,...,k, have alterniatinq f-ign far0 ' 0
a1

0 . So ' :...,: . r the '
0

h h 2po) - (,-1 + PO +  2 F- +

(1+:" a *4-- (-0+ - + 0 h .+.. ,0

k

a'-' -. + (- a3
+

K ' ''+-)'

h h++
: 1+'q* + + po 0 for- s1.

2 0 0

for all h

gk(s) :=1+ + 0 for 0 *:s -1.

Now one verifies either by straightforward discussion or by using computers that

min gk(s) > 0 for k = 1,2,3,4.
0 < s< 1

, 0 for k = 5,6.

So (4.2) holds just for k = 1,2,3,4 and the Lemma is proved.

Combining Lemmas 4.1 to 4.3 we obtain by Gerschgorin's Theorem [21]:
n

Theorem 4.4: Let (4.1) be satisfied and h min (2/P! . Then the matrix A is rIml r
i= 1

and there are positive constants Dk  such that

-l1 -21IA I11 < Dk  * h

In contrast to Theorem 3.7 we have an estimation for .- -. -

Since in the proofs of our Lemmas 4.1-4.3 the coefficients a. in (2.1) only had to sati-.-

(4.1) and since we obtain stability for the nonlinear problem simply by proving stabilit:

for the linear problem we can generalize our Theorem m. imediately to the more general

case given in (2.16), (2.17):

-24-
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Theorem 4.5: Let z be the unique solution of (2.16), < 7- '* aI

0 < a < a. (-,z('),z ()) in 0I i =1,2,..,n
-- 1 X. -

1

no<Q, < {f(O'l'O'"O0) (.,z(.Vz(.)) - [ a(0 'I'~ ,0 )  , )) .
i=l1 (z)'x1(')Zixi('

n

×( ai(.,z(.), z 1 )7- < in iI

and , with Pi in (4.1), let

(4.3) ,{f(I0----) (-,z() ,Vz(')) - a. (,z('),z ('))z (-)
i+2 i x. x x

i1 1X 1X.

×(a. (',z(-),z (.)))-ii < P* in Q
1 X.

1

with continuous functions ai, f(O,...) (',z('),Vz(.)) and

f(O ... ,i,0,.... ,0)
i +2('z . , (-) i •

Then the discretization of F in (2.16) is stable i:. a :,eisL:2ourhoo of :

solution z.

-25-
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5. Convergence and asymptotic expansion.

With the stability, proved in .3 and 4, we obtain convergence and asymptotic expan-

sions by studying the local discretization error. Before we do so we need some formal

2 -0
notations. With the spaces E C (.) C(..) and E

0  C(i C and the rid

4. :' -. .. ..... " ..,:.w.

Eh := Eh h: h,.. h,n h,n

with one of the norms

I r i ll h , ,,, : 
=  II m a x I ( ) ! o r

x 4 Dh,_

(5.1) "n h 1 h,2 hn %(x) h2 1h/2x c D h,.:

and the restriction operators

EE OE r E 0

h h 1'E :E hh
y ,, IDn (u,v V) (u . n ,v h , .

Dh, h,. h, r.

Now we have (for 3 see (2.:))

Lemma 5.1: Let in (2.2) the solution z EC C2(ql)), V f::f(0,.,v,. .V. V

and f(.,,. )E Ca(8 x B ) for v. +...+v i,. ..,q, and let

az .... z n

the usual formal differential operator in the multivariate Taylor exansio:.
n

be given as ( "-) . Then the local discretization err7rr (kp.. )

is given in regular points x as

qil ,h1 j
hOPh r)(A hz)(x) : {- a.(X) I ' Mx

i jz2

2q Ifn q .2 2jZ~x)

(5.2) h2 2 z-x)) f(xz(x),V(x)

L + O(h2 (q+l)+Q) for x E h .

In irregular mesh points an ,summing the derivatives of z, have to be

changed in the following 
way:

Let z* EC 2(q+l)+a(Q*
) be a smooth extension of z , where p* n S is large enouah

to contain all grid neighbours for irregular points. Then use

-26-
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qi I  
2h ' z(x) i Wk+l k+iz*(F i )

(2j) 2j + TT rea-
j=2 2] k+l1 'xi

. . k+iz (-

h
2
j
+ 2  

2j+ 1(. s. hk+2 _____i
)

(2j+l)! 2j+l + 2(k+l k+l

(5.3) I i

with i" on the gridline through the point x

in e. direction and i-th co-ordinate in- 1

(x (0-l) he., x ; h e.)
11

q+l q
for the corresponding X resp. T in (5.2).

j=2j=

Proof: d we ': ..

2h = u'(x) +- 1  
h23 j ( 9

u(x+h) - u(x-h) h (2j+l) 2 -l+)
2h 1u2(x) + (2j+) u (x) + O(h

and

±5 4 (::) . :: [--. h (i-I)2 = u" (x) + 2 (21 u (2j)(x) + O(h 2
, - 2 +

h j=2 (2j)!

for any u 2 (x-h,x+h).

C2 (q+l)+a ( (ql)c

Now z E C 1) may be extended to a z* C
2
(+l)+a(). Such extensions

exist , but they usually do not satisfy an extended differential equation (2.2.

Further, since we can split (5.2) into terms, each one only involving derivatives with

respect to one variable, we may co: 1ne th;e 1.,:i :32 n<ow to :.O variable"

Since we need the local :.cr. : error, w-. '' 1: (!.5) hy z.

oLtained a s ; e ), wh re i s efire , P (-(v- - e. )

P (XT, = g(;.') ''o we have. " .. wlI :ow:. rror 1,. -::3haz or polr;crr.il

interpolation,

(x+hei-x ) (x+hei-x)... (x+he.-x+ (k-l)e i

' (kkl)(z(x+he)- = z kl

(k+l
(5.51) i hk+l a z(i

k+ h ax. k+l
1Bto

By inserting (5.5) into (5.4) we evidently obtain (5.2), (5.3). L

-27-
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Combining formulas (5.2) and (5.3) and observing that there are only O(h - ( - l )

irregular points one obtains

Lemma 5. : The local discretization error (,h ) (Ahz) adnits an asymptotic exransl .)r.

the form

I(hF) AhZ) - A h 2 g 2 1 h,O

(5.6)
for 2q < k-l + l /a, a .,! o , k < : ,7

where the g2 1 are defined in (5.2), (5.3).and q < q as in Lemma 5.1.

Again, since (5.1) can be split into the terms mentioned in (2.11), we may use tr.

arguments in [7] to prove Theorem 5.3. In this Theorem we only give conditions for a. ,f

and g,3 to ensure z E C (). The more or less "geometric" type conditions, give::

e.g., in Agmon-Douglis-Nirenberg [1], §7 are only referred to. If they are valid, the

smoothness results for the e21 are ensured.

Theorem 5.3: Let, for k<14 and k < 6, the 11. l-norm, a = a:nj! a=2, the condition

(4.3) and (3.26)-(3.27) or (3.28) be valid respectvely.Let further zE C
t
(2WE E,

~2q+ot - 2 02a 2q+2+a() __ n
C- cq(xB), a E C

q  , 
g c 00) for 0 < < 1 an___d

k - 1 + 1/0 < 2q+a, and "geometric" conditions (see [1], §7) be satisfied.

Then z E c2q+2+m(Q) and we have for the approximate solution h

- = h h e + O(hkl+l/o)

(5,7)

for q = max{m E 3JN2m < k-l+l/a, m < q)

fer k-l+l/oere Oh - + /
) refers to the difference with respect to 1 GI{ ,o2,.Furt[

_so ni:

c2 (q-lI) +2 +a
e21(0) E (f), e 2 (-) = 0 on 3 , i = 1,2,...,q

(5.7) corresponds for (3.29) to the result of Pereyra-Proskurowski-Widlund [241.

A result,given in Agmon-Douglis-Nirenberg [i], 7, may sometimes help to avoid

difficulties arising from the violation of afl E in isolated points. Since in

all our proofs we only need differentiability properties along grid lines, one only has

to choose the grid such that its lines avoid non-smooth boundary points. Then the

results in [1], §7 may be used to obtain results for the case h0 2_h > hl> 0 ,which

might sometimes be useful.
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6. Two special cases.

The breakdown of the asymptotic expansion in Theorem 5.4 is, for a sufficiently smooth

situation, caused by the interpolation error, given in (5.5). This error will be less

disturbing in one of the two following cases:

(6.1) Let s. = 0, i = (is... ee (2.6)), in (5.5) for all x r c h,i

(6.2) We admit only h, such '.hat

s i = const. (independent of h ), i = l,...,m I in (5.5) for all x h'i

The second case is, admittedly, somewhat artificial, but if it is satisfied we have

instead of (5.7) the relaL. I

qf h - Ah z = Ah Y h2 1e2 1 + O(hk+l/)

(6.3) if (6.2) is satisfied, with k+l/a < 2q+a and

q = max {m e I 12m - k+il/, m < q ).

In some cases, when (6.2) is satisfied we may, by a proper choice of (different) stepsizes

in the 'irection-r of different co-ordinate axises,even obtain s. 0, that is (6.1). This
1

case has been treated in Pereyra [23] for uniformly elliptic operators of the following

(casilinear) type

n
1- a. '.'-Yxi + f(.,y(.),Vy(.)) in Q2

(6.4) FY: j=

Y() - g() on a0

n 2
with I ai. . > a II l n Q with a > 0 and for any real vector

i,j=l 1) ) 2

= n The discretization of (6.4) under the condition (6.1) is obtained by

using (2.4) in regular and irregular mesh points and by replacing in irregular mesh points

the nh (x±hei ) with x ±h e. E Da by the boundary values g(x±hei). Then Pereyra

[23] has proved (the smoothness properties of the e21 in (6.5) may be checked by some

additional computations).

Theorem 6.1: Let (6.1) be satisfied and the operator Fc  in (6.4) be discretized as

described above. Further let a.. E C 2q+(), c2q+(xB) and 30 E C2 q+ 2 + x

2q+2ca 1 f(,-* E ___

g E c2q+2+a ), zEC () and "geometric" conditions for 30 be satisfied.Then z E C (0)and

h2 + O*h2q+ a), e21. fc2(q-l)+2*( a)
(6.5) h-AnZ A h le 2 1 + O(1 2 1  E

-29-

-- -- - .. ... . - . ........... I= . . ... , ....!... ... ..... ... ... ....



7. Discrete Newton and deferred correct in :

As an immediate consequence of the reszults in '::, :" ', ,, :1 ,

polation techniques to get higher order results. Thel 10nerWI Al L

Bulirsch-Stoer [13) and applied to the 7irichlet yroblem fo r t:, ,' ,' ion i

Pereyra-Proskurowski-Widlund [241. So we only qive the result !erc.

Theorem 7.1: By applying Richardson extrapolation once rest. twice to the methods Iiven

in Theorem 5.3 for k = 4 resp. k = 6 we get approximations of order 3.5 re__. 5.h in

-norm. if (6.2) is valid orders 4.5 resp. 6.5 are obtainable by .>

three extrapolation steps. Even higher orders (up to 2q+l, see Theorem 6.1) are obtainable,

if (6.1) is satisfied.

Using Richardson extrapolation requires the solution of the nonlinear system

( hF). =0 for decreasing h . That implies, for higher dimensions n ,-.:

sizes , te s.'s es: :c- . a e:.a' ve. 6a be' .

disadvantage by either applying Pereyra's [22] iterated deferred corrections or iterated

defect corrections or descrete Newton methods [6,8].

The first two methods require for every correction step the solution of a nonlinear

equation (of the same size) where the original right hand side 0 has to be changed.

discrete Newton methods only the original nonlinear equation has to be solved.

The corrections are obtained by solving linear systems (of the same size)with a
fixed matrix and different right hand sides and therefore need much less computational

time.

Most of the conditions for the applicability of iterated defect corrections
are easily verified, whereas for discrete Newton methods we need a lot of technical
formalism. So we prove the results for iterated defect corrections and present

discrete Newton methods and sketch deferred corrections without proof. For deferred
corrections we have to approximate (only kz6 is discussed here) the local discreti-

zation error (%hF)Ahz given in (5.2) as ((PhF)(Ahz)(x)=h2 b Ix) h b 2(x)

a I (OOVl .... V)
Now we have from (5.2), with f::f +..aZl.. .az V)n ')+ +) :

n

2 h 2  
n ai(x) 4 3bl 2 4 + f(x,z(x),vz(x)))

i1ax i ax.i3

and

-30-
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h 4b (X ) 1 n L _ i z(x)
2 ~ 12 6 a×5 a i f(x,z(x),V z(×))}

3 h (f(x,z(x),V z(x))
i=l 3x.3  z

and so we need approximations for h2 b1 (x) a, h 2b (x) + h 4b2 (x) of the order 4 a

6 respectively. Now the same remark ist appropriate for irregular points with

Srespect to s - 1 for the behaviour of the a V/ as given in Pereyra-Proskurowsri-

Widlund [24], p. 9.

In iterated defect corrections and in discrete Newton methods we have to

discretize equations of the form

(7.1) F'y: Foy+d, with d: (e in Q
e~0\eon 30•

For defect corrections F 0is given as F in (2.1), whereas F E L(C (o) n C(P),

C(2)xC(3i)) for discrete Newton methods. With the discretization, defined in 2.,

we obtain

(PhF d )h =( hFo)nh + hd,

(7.2) where PhFo is described in §2 and

QhE L(C()x C(aQ),(Fh,nfnl)x(Gh,nNa)).

For the considerations below we have

(7.3) d . o (in 0 and therefore d =e
(73 0=( on 9P ) 0 0d h )

whereas for e**O in (7.1) the component of d in Fh,n n is more compli-

cated since the boundary values enter the difference equations for

irregular points in (2.6). However, in either case Ohd is independend of h '

Discretizations, for which (7.1) implies (7.2), are called strongly linear, see

B6hmer (8]. In [8] we have proved that , if Fy + d = 0 is uniquely solvable for

small enough I d I and if the strongly additive discretization method generates

0.hd independend of nh9 a stable (hF and an error asymptotic, where the coefficients

e2 1 in (5.7) are elements of linear spaces with certain properties, see
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Assumption. 2.-. 2'n [81 par- -: n era - -r'.:; _

the results give:, below. kl). z:1l

have been shown to be satisfie:. 2.s7:10.- 15, :-.

a consequence of the smoothness reqU;-'ren s_ w-C''~-

to formulate explicet I, and_ of tho tr1 ' O

For discrete Newton ne-.hos an' t-mete: lefec e-a

compute defects in the form

(7.4) d =±Fz 1, 1 ,,.

That means, we need extension operators wnicn h~ . m~ee ~ <1

as nh and h defined on U to co: (sos~rctn E t

that Fy. or at least 0 y is defined. This may be done in :iffere.nt wayf:,

all based on the observation that it is enough to use univaria~e ~'ctu

or, approximation operators T. For a point x E~ we then find along a griL .

i-th coordinate direction the situations in Figure 3:

x

x r4
0x I 2 v x x r

r-1. r xr-l

F'igure 3

In x 1 ... ,x r *e know the corresponding n1,*.. rf (as the approximate values given by

the difference equations (2.4) -(2.8). Here r depends on x and the direct ion e.

Further we )mow in x,* and x* the r*and n*from~ the boundary condition. Finally,
1 1 r

we may compute no0 and n r 1  by the appropriate formulas (2.5). Let

rT (no I~ ni I ~ .. oh 01 r r+1

-32-
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Metho: 1: Continuous piecewise polynomials:

With a X > k, k as in (2.5), define T as (7 are the zolynomils cf :ergee

and [s] = entire part of s)

p( : = Fnh (x )E flXi-=Ol,...,*: = -,

Px.) =., i = I
(7.5)4

" Tnhl (

PU +(X i) i, i = r+1-X,...,r+l.

Method 2: Spline-functions:

Define 7 as a spline-function of degree X > k as discussed in 3,,S] . o

Method 3: Overlapping polynomials (discrete splines):

Let X=A* 2 K >k, < = 1,2,3,4 and define T as

P : = Th ( E I,

Po(x) 0 , = 0.,

(7.6) PU Tnh (x * t , x * )K E , , -pA +<~ (ptl)A +,c

P 1x ) = rV , v = pA_,...,(ptl)*t2, p = i -1.

The last polynomial is defined analogously to (7.5) 0

Method 4: Symmetric formulas and polynomial extrapolation [ 8,241

Interpolate the points (x V ),for v = 0,1,...,k,v = r-k~l,...,r+l,

v = l,...,A+ 1, and v= r-X,...,r by polynomials Pk,i- Pk,e' P Xi and P Xe'

respectively, and compute extrapolated provisional values

(7.7) nV  Pk,i (xv ),v = -,-2,... and n. k = P (Cx ( ). v = r+2,rt3,...,

and

(7.8) nV = Pl (x V),v = 0,-l,-2,... and n = P ,e(xV)V = r+l,r2,...,

-33-

Ce .... ....



respectively. Then use for , svmcstr: tornulas, -ase: 0, ,, .. "

to compute the iefect Fz. .. , ) For ponts

points are necessary to corpute these aparox--a--:.S . -. e outer values

are obtained as provisional values from polynoo7ial extra clation an. have

to be updated' after every iteration as far -i necessary. C

To formulate iterate] defect corrections we have tc replace F in (2.1

by F,-, definei as

F y": =yFy-F _, . " -.

In the discretization we need Fz only in (F. n 2) U(- n 3.). :lce::.e

satisfy the boundary condition in the grid points &fl 32, un to rurj-cf: -

errors, we are in the situation (7.3) and obtain

(P hFi lnh(X) = (wPhF)oh(x) - Fz, ,(x) for x E :1U.

(7.9)
(k0iFZl)nh(x) = nh(x) for 'IGhn ?

Now the iterated defect corrections are defined as follows

(i) given the starting value C ho=h such that (WhF',o=
copt h.  (Phh "h,.=

(7.10)compute z- 1  
h,l and &h,R-l from

(ii) ((PhFt_l)<,_ 0 with phFk_, in (7.9),

(iii) finally, define with hn-(hin-h *2),

In discrete Newton methods we have to discretize linear equations of the

form

(7.11) F'(z)(z z-z9 _) : FZ9  .1

So we need, see (2.4) and (2.10),

n Th(+he)2 - (X) + Th (x-he)
(h F' (zo))rh(x) = -

a (x) i h

i~l h2

(7.12) + n f(
0
,. 10.. 0) (xz (x),Vz Wx) Th (x+he) - Th (x-he)

i i2 0 0 2h

+ f (0,,0 ... 0)(X,Zo(x),Vzo(X)) h(x) for x %.

.- -34-



-ar re: os x E I : he chanzes corresc:.'n : .) have

,a:e. .i) the o(x) z W (x) ar own, e (x ., e

one ot mne 7ethods :efinel above, n:. [,4] we have show:- -'a!,

satisfied here, we not nee it ('.*1) F'(z ) exct, ha ay

to an F*(- ) whichi ostined fror F'(: ) b a ran r V (x)

z (x+ne.) (x->re.) z (x-te ) - :-(x-he-]

Now we are ready to formulate our Dsrrete hewtn:.

problem (..). Let (,0,, as ; fine: i: ( . F. ):=F'(: ) a::

)): c o
F2*(.Zo).z F*(s ),by re~lacing ir. F'(L: ) t'; .... :: :: [

(7.13), *K: ) as I:. (7.7) and use one of the operato: : e.

i) given the starting value ! i h .ha-

(t~nF){h.o1 3, _ h,_ ! an.

(7.14)
compute h,Z, 1,2,..:

n(ii) hF*Zo)) h, , i  =- Ii .I

on ch,n ;

This method is called discrete Newton method. As indicated already in

Pereyra-Proskurowski-Widlund [24] the order results for Jeferred corrections,

als well as for discrete Newton methods and iterated defect corrections, are

rather poor due to the fact that in (5.7) we have only 0(h c

instead of an 0(h ) which would correspond to the well known order results for

k = 0 and k = 1.

Theorem 7.2: Let k = 6, ) > C in Method 1-4, and let the coni'itions in

Theorem 5.3 be satisfied with q = 3 and c > 0.5, so z E C (2l). Further,

let 4 h,l be defined either as the first deferred correction or by_ (7.10) or

(7.14); Then

(7.15) h'= A hz + 0(h3.5

Further, if (6.1) is satisfied we have instead of (7.15)

4 4.5
(7.16) hl

= 
Ah fz+h e4,1 + O(h

-35-
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If we compare the different types of defect a. ef-. r:e"

with the Ric'-rdson extrapolation, the main advantage cf thex-rai-' -

to work up to order 5.5 compared to order 3.5 for the orther 7netl.oc a-.:

provide us with asymptotic upper and lower bounds for the exasc sc- tj:

(see Bulirsch-Stoer [13] ). However, one has to pay for these advanta;e

by much higher computational time than for discrete Newton metho's or

of its equivalents. Expecially, for nonlinear problems (2.2) the discrete

Newton methods yield the corrections in a relatively small amount cf

additional computations, by solving linear equations with a known matrix twice

(see 8.). For those problems the discrete Newton methods are even superior tc

iterated defect and deferred corrections which furnish the correctic:.s

solving nonlinear systems of the initial size with very good known

starting values, whereas Richardson extrapolation needs the solution of

nonlinear systems, with numbers of equations proportional to 1/h".

8. Computational remarks:

In equation (2.6) the fraction a li/ao0i1will become verv large if s.

is close to 1, that is, if the irregular point x E Sh,i is close to the

boundary. Therefore we will scale the equations in (2.6) always so, that

the coefficient in the linear part of nh(X) becomes 2na.

If (2.2) is linear we may use any good method to solve the linear

system (2.4)-(2.6). The choice of the method very much depends on the

properties of f, see e.g. Rosser (25] . In many cases it will be possible

to get the corrections in the discrete Newton method (we choose V= 2 in

(7.10) for such a case) by considerably less computational effort. That is,

for cxample, true if the differential equation in (2.2) is the Poisson

equation (treated in Pereyra-Proskurowski-Widlung [24] or the Helmholtz

equation Az + cz = 0, c = constant).For both equations one can very well

use the fast Laplace solvers as described in [24] and then gets the

corrections pretty cheaply.
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If (2.2) is nonlinear, the system ( 2.4)-(2.R wi!l be * rnn-inear, toe.

most cases one will then use the Newton method

(8.1) (h F) ' (T _l) (r-) _ i) = -( hF)nrl , = 1,2 ....

to obtain the solution , = lir n of (2.4)-(2.8). If an appropriate stoping criterum
h Z

for the iteration (8.1) has been chosen, so .h := r) , one may often use the already

known matrix (P F)' (n Z1) for h(F*(z )) in (7.10). So,again,the corrections by the

discrete Newton method aye obtained relatively cheap.

Finally, we have pointed out already in 7. that for a proper choice of h the

discrete Newton method may be executed on a fixed grid rhn and (6.2) will usually be

satisfied. So the chances are pretty good that a --

mation. In that case it is worth-while to use A = k+l in Methods 1-4.

If (6.1) is satisfied,and the situation is smooth enough ,it is advisable to take

pretty big (X > 10). Because of the loss of asymptotic terms in the methods discussed

in '!Lerem 7.- Richardson extrapolation mighT WZi- i be s:-:ei:.I . U-

smooth situations.
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j. Numerical examjles

As demonstrating examples we ;se no.n arv v3lue prohben., a-- Dn "he :a-e

domain Q2, .etineJ by the eq';erent al e uations - . ... . ..... , 3 . "

the boundary values, which are the restrictions of the exact soutions

Z., i = !,...,4, to the boun ary - . 1o we nave

( . - {(x,y)!(x-O.5)" + ky--)' <(0.) }

.z: = z +z + 2z , z(x,y) si:.(xy);
xx yy

F( z z +z + 13z C, z(x,y)= sin(x±2.);

2z=
z - ..e -C, z(x,): Ln(x ," ;

F xx yy

With the discretization in §2 we obtain (PhFi and (OhF 2 as systems of linear,

hP 3n PhFa systems of nonlinear equations respectively. The first step i

(7.10) and (7.14) is to solve (0hF.){h = 0. The nonlinear systems, for i = 3,-,

are solved via the usual Newton method,see , ,:hich is nrt to mixe. u. w.

discrete Newton method below). The matrices of ail the problems above are

positive definite and, for the special case of £2 in (9.1), symmetric. So we

solve the linear equations by using SOR methods combined with techniques to

estimate the optimal relaxation parameters. For the linear problems F1 and F,

these relaxation parameters have to be estimated only once, since the

discretization (PhFi, i=1,2, and the discrete Newton method are based on the

same matrix. For the nonlinear problems the matrix in the discrete Newton

method is often replaced hv the last matrix i Newton's method to solve the

nonlinear system (hFi) h£O, i=3,4. So the estimation for the optimal relaxation

parameter in the last Newton step again may be ised. in the discrete Newton method.

Therefore the iterations in the discrete Newton method are rather cheeply

available.

In the following Table we give the errors 1!Ch,v-Lz12 for v = 0,1,2

and for k = 3,...,6, where k is given in (2.5 ). The defects in the discrete
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Newton. -it.c~ re compute- wtt * t'o- an. -, see - e-.hoh 3 we

use overlappTin polyno..sals w!--,, < and 1 . 7e-.o - we : Iy :ourent t:.-se

results, where we have usec polromrials of hegree 9- i. ) c orpue

provisirral values for tlne cuter points wt-,-'c'- we nee- for -he sy=retr':

civit-e: :::-ferernces. ihecause 3,V.i~ we have

T'nerefore the correction V M ~ ay be uselJ as an. est-*m3---'c~ for the

error Lhhv' especijally ~h2h3has been Ase: -o etiruae -,-A

The quir qare defined as quotients between. these estimatel- errors ar2 *,he

real errors.

The following numbers are computed on a *UNI'AC 11238 with Thcuble preciric:.

(about 18 digits). I wantto thank cand. math. H. Offermann, who did the

* computations.
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Example 1 Example I

method 3 method 4 method3 3 cetho
k v error q error q error q error

3 0 1.3,-06 1.0 1.3,-06 1.0 8.2,-05 1.0 8.2,-O5 1.0
1 1.6,-09 1.1 2.3,-08 1.0 3.0,-07 i.0 4.3,-07 1.0
2 1.7,-10 0.6 7.6,-10 0.8 1.3,-08 0.6 4.2,-08 0.9

4 1 4.2,-10 1.0 2.0,-08 1.0 1.4,-07 1. '.8,-0 > 0
2 8.6,-12 0.9 2.4,-10 1.0 2.3,-09 0.8 3.4,-09 1.3

5 1 4.3,-I0 1.0 2.0,-08 1.0 1.4,-07 1.0 6.3,-08 1.O
2 1.2,-12 1.0 2.4,-10 1.0 4.6,-10 1'.0 6.4,-10 1.0

6 1 4.2,-i0 1.0 2.0,-08 1.0 1.5,-07 i.C 5.5,-OS 1.0
2 9.6,-13 1.0 2.4,-10 1.0 2.8,-10 1.0 3.8,-IC 2.4

Example 3 Example 4

3 0 2.5,-06 1.0 2.5,-06 1.0 2.4,-05 1.0 2.4,-05 1.0
1 6.6,-09 1.1 2.3,-08 0.9 7.7,-08 i. 3..,-07 1.0
2 1.1,-09 0.6 2.5,-09 0.8 1.6,-09 0.6 3.5,-08 0.7

4 1 2.8,-09 1.0 1.8,-09 1.0 6.4,-08 1.0 3.6,-08 i.1
2 1.2,-!C 0.8 1.6,-i0 0.8 2.4,-09 0.7 3.0,-09 0.6

5 1 3.2,-09 1.0 3.5,-i0 1.0 7.6,-08 1.0 4.2,-09 0.9
2 1.3,-il 0.8 2.0 ,-1 0.4 2.6,-10 0.7 1.1,-09 0.6

6 1 3.3,-09 1.0 1.9,-i0 0.9 7.8,-08 1.0 3.4,-09 i.1
2 5.2,-12 1.0 3.4,-Il 0.7 3.2,-10 1.1 1.5,-09 1.1

Table

From this table we see that, even for k 3, the first correction is worthwhile

and for larger values of k, especially k 6, two corrections considerably

improve the approximation and that, expecially in method 3, the third correction

still gives an excellent estimation for the error.
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